Skip to main content

Time Travel: Possible Options Of Time Travel |Paradoxes Of Time Travel|

  Our Universe started with a big bang and at that instant the main ingredients of the universe were created, which are known as space-time. Space has three dimensions and time has only one dimension. Since space has three dimensions, we can go in three directions left, right and up or at any point in space but on the other hand time has only one dimension due to which we can go in only one direction in time with a constant rate, which is future. However, there remains a question that can we travel to any point in time like we can go anywhere in space? Is time travel possible? The short answer is “yes”.





Time Travel

  Time is one of the great mysteries of the universe. We are all swept up in the river of time against our will. Time travel has been the main topic for science fiction writers. But the first serious attempt to explore time travel in fiction was H. G. Wells’s classic The Time Machine, in which the hero is sent hundreds of thousands of years into the future. In that distant future, humanity itself has genetically split into two races, the menacing Moorlocks who maintain the grimy underground machines, and the useless, childlike Eloi who dance in the sunlight in the world above, never realizing their awful fate (to be eaten by the Moorlocks).

  From the perspective of science, time travel was impossible in Newton’s universe, where time was seen as an arrow. Once fired, it could never deviate from its past. One second on the Earth was one second throughout the universe. This conception was overthrown by Einstein, who showed that time was more like a river that meandered across the universe, speeding up and slowing down as it snaked across stars and galaxies. So, one second on the Earth is not absolute; time varies when we move around the universe.

  Nonetheless, time travel to the future is possible, and has been experimentally verified millions of times. If an astronaut were to travel near the speed of light, it might take him, say, one minute to reach the nearest stars. Four years would have elapsed on the Earth, but for him only one minute would have passed, because time would have slowed down inside the rocket ship. Hence, he would have traveled four years into the future, as experienced here on Earth. (Our astronauts actually take a short trip into the future every time they go into outer space. As they travel at 18,000 miles per hour above the Earth, their clocks beat a tiny bit slower than clocks on the Earth. Hence, after a yearlong mission on the space station, they have actually journeyed a fraction of a second into the future by the time they land back on Earth. The world record for traveling into the future is currently held by Russian cosmonaut Sergei Avdeyev, who orbited for 748 days and was hence hurled .02 seconds into the future.) So, a time machine that can take us into the future is consistent with Einstein’s special theory of relativity. But what about going backward in time?

  Special theory of relativity. But what about going backward in time? If we could journey back into the past, history would be impossible to write. As soon as a historian recorded the history of the past, someone could go back into the past and rewrite it. Not only would time machines put historians out of business, but they would enable us to alter the course of time at will. If, for example, we were to go back to the era of the dinosaurs and accidentally step on a mammal that happens to be our ancestor, perhaps we would accidentally wipe out the entire human race. History would become an unending, madcap Monty Python episode, as tourists from the future trampled over historic events while trying to get the best camera angle.

Possible Options Of Time Travel

  The first time machine involves a wormhole. There are many solutions of Einstein’s equations that connect two distant points in space. But since space and time are intimately intertwined in Einstein’s theory, this same wormhole can also connect two points in time. By falling down the wormhole, you could journey (at least mathematically) into the past. Conceivably, you could then journey to the original starting point and meet yourself before you left. But as we mentioned in the previous chapter, passing through the wormhole at the center of a black hole is a one-way trip. As physicist Richard Gott has said, “I don’t think there’s any question that a person could travel back in time while in a black hole. The question is whether he could ever emerge to brag about it.”

  Another time machine involves a spinning universe. In 1949 mathematician Kurt Gödel found the first solution of Einstein’s equations involving time travel. If the universe spins, then, if you traveled around the universe fast enough, you might find yourself in the past and arrive before you left. A trip around the universe is therefore also a trip into the past. When astronomers would visit the Institute for Advanced Study, Gödel would often ask them if they ever found evidence that the universe was spinning. He was disappointed when they told him that there was clearly evidence that the universe expanded, but the net spin of the universe was probably zero. (Otherwise, time travel might be commonplace, and history as we know it would collapse.)

  Third, if you walk around an infinitely long, rotating cylinder, you also might arrive before you left. (This solution was found by W. J. van Stockum in 1936, before Gödel’s time traveling solution, but van Stockum was apparently unaware that his solution allowed for time travel.) In this case, if you danced around a spinning May Pole on May Day, you might find yourself in the month of April. (The problem with this design, however, is that the cylinder must be infinite in length and spin so fast that most materials would fly apart.)

  But the most promising design for a time machine is the “transversable wormhole,” a hole in space-time in which a person could freely walk back and forth in time. On paper, transversable wormholes can provide not only faster-than-light travel, but also travel in time. The key to transversable wormholes is negative energy. A transversable wormhole time machine would consist of two chambers. Each chamber would consist of two concentric spheres, which would be separated by a tiny distance. By imploding the outer sphere, the two spheres would create a Casimir effect and hence negative energy. Assume that a Type III civilization is able to string a wormhole between these two chambers (possibly extracting one from the space-time foam). Next, take the first chamber and send it into space at near light-speed velocities. Time slows down in that chamber, so the two clocks are no longer in synchronization. Time beats at different rates inside the two chambers, which are connected by a wormhole. If you are in the second chamber, you can instantly pass through the wormhole to the first chamber, which exists at an earlier time. Thus, you have gone backward in time. There are formidable problems facing this design. The wormhole may be quite tiny, much smaller than an atom. And the plates may have to be squeezed down to Planck-length distances to create enough negative energy. Lastly, you would be able to go back in time only to the point when the time machines were built. Before then, time in the two chambers would be beating at the same rate.

Paradoxes Of Time Travel

  Time travel poses all sorts of problems, both technical as well as social. The moral, legal, and ethical issues are raised by Larry Dwyer, who notes, “Should a time traveler who punches his younger self (or vice versa) be charged with assault? Should the time traveler who murders someone and then flees into the past for sanctuary be tried in the past for crimes he committed in the future? If he marries in the past can he be tried for bigamy even though his other wife will not be born for almost 5,000 years?”
  But perhaps the thorniest problems are the logical paradoxes raised by time travel. For example, what happens if we kill our parents before we are born? This is a logical impossibility. It is sometimes called the “grandfather paradox.” There are three ways to resolve these paradoxes. First, perhaps you simply repeat past history when you go back in time, therefore fulfilling the past. In this case, you have no free will. You are forced to complete the past as it was written. Thus, if you go back into the past to give the secret of time travel to your younger self, then it was meant to happen that way. The secret of time travel came from the future. It was destiny. (But this does not tell us where the original idea came from.) 
  Second, you have free will, so you can change the past, but within limits. Your free will is not allowed to create a time paradox. Whenever you try to kill your parents before you are born, a mysterious force prevents you from pulling the trigger. This position has been advocated by the Russian physicist Igor Novikov. (He argues that there is a law preventing us from walking on the ceiling, although we might want to. Hence there might be a law preventing us from killing our parents before we are born. Some strange law prevents us from pulling the trigger.) Third, the universe splits into two universes. On one time line the people whom you killed look just like your parents, but they are different, because you are now in a parallel universe. This latter possibility seems to be the one consistent with the quantum theory, as I will discuss later when I talk about the multiverse. 
  The second possibility is explored in the movie Terminator 3, in which Arnold Schwarzenegger plays a robot from the future where murderous machines have taken over. The few remaining humans, hunted down like animals by the machines, are led by a great leader whom the machines have been unable to kill. Frustrated, the machines send a series of killer robots back to the past, before the great leader was born, to kill off his mother. But after epic battles, human civilization is eventually destroyed at the end of the movie, as it was meant to be.
  Back to the Future explored the third possibility. Dr. Brown invents a plutonium-fired DeLorean car, actually a time machine for traveling to the past. Michael J. Fox (Marty McFly) enters the machine and goes back and meets his teenage mother, who then falls in love with him. This poses a sticky problem. If Marty McFly’s teenage mother spurns his future father, then they never would have married, and Michael J. Fox’s character would never have been born. The problem is clarified a bit by Doc Brown. He goes to the blackboard and draws a horizontal line, representing the time line of our universe. Then he draws a second line, which branches off the first line, representing a parallel universe that opens up when you change the past. Thus, whenever we go back into the river of time, the river forks into two rivers, and one time line becomes two time lines, or what is called the “many worlds” approach, which we will discuss in the next chapter.
  This means that all time travel paradoxes can be solved. If you have killed your parents before you were born, it simply means you have killed some people who are genetically identical to your parents, with the same memories and personalities, but they are not your true parents.
  The “many worlds” idea solves at least one main problem with time travel. To a physicist, the number one criticism of time travel (besides finding negative energy) is that radiation effects will build up until either you are killed the instant you enter the machine or the wormhole collapses on you. Radiation effects build up because any radiation entering the time portal will be sent back into the past, where it will eventually wander around the universe until it reaches the present day, and then it will fall into the wormhole again. Since radiation can enter the mouth of the wormhole an infinite number of times, the radiation inside the wormhole can become incredibly strong—strong enough to kill you. But the “many worlds” interpretation solves this problem. If the radiation goes into the time machine and is sent into the past, it then enters a new universe; it cannot reenter the time machine again, and again, and again. This simply means that there are an infinite number of universes, one for each cycle, and each cycle contains just one photon of radiation, not an infinite amount of radiation.
  In 1997, the debate was clarified a bit when three physicists finally proved that Hawking’s program to ban time travel was inherently flawed. Bernard Kay, Marek Radzikowski, and Robert Wald showed that time travel was consistent with all the known laws of physics, except in one place. When traveling in time, all the potential problems were concentrated at the event horizon (located near the entrance to the wormhole). But the horizon is precisely where we expect Einstein’s theory to break down and quantum effects to take over. The problem is that whenever we try to calculate radiation effects as we enter a time machine, we have to use a theory that combines Einstein’s theory of general relativity with the quantum theory of radiation. But whenever we naïvely try to marry these two theories, the resulting theory makes no sense: it yields a series of infinite answers that are meaningless.
  This is where a theory of everything takes over. All problems of traveling through a wormhole that have bedeviled physicists (e.g., the stability of the wormhole, the radiation that might kill you, the closing of the wormhole as you entered it) are concentrated at the event horizon, precisely where Einstein’s theory made no sense. Thus, the key to understanding time travel is to understand the physics of the event horizon, and only a theory of everything can explain this. This is the reason that most physicists today would agree that one way to definitively settle the time travel question is to come up with a complete theory of gravity and space-time. A theory of everything would unite the four forces of the universe and enable us to calculate what would happen when we entered a time machine. Only a theory of everything could successfully calculate all the radiation effects created by a wormhole and definitively settle the question of how stable wormholes would be when we entered the time machine. And even then, we might have to wait for centuries or even longer to actually build a machine to test these theories.

Comments

Popular posts from this blog

Why Life On Earth Is Possible? Our Unique Planet

  The Earth, our home planet in the Universe contains a wide variety of life with a huge complexity.It is the home of creatures in the deep oceans, the birds which roam across the sky, animals livings in forests and the insects living beneath the surface of Earth. Earth is the only known planet that can sustain life.Nowhere else life has been found yet.This variety of life on Earth have been made possible by various factors. Without these life on Earth could not have been possible. We will discuss them here. Effects Of Distance From Sun   The Earth lives in the habitable zone from the Sun, just far enough so that liquid water, the "universal solvent," can exist to create the chemicals of life. If the Earth were farther from the Sun, it might become like Mars, a "frozen desert," where temperatures have created a harsh, barren surface where water and even carbon dioxide are often frozen Solid. Beneath the surface of Mars one finds a permanent layer of frozen wat

What Is A Neutron Star? How It Is Formed? Explained Briefly

    Our Universe is full of most strange and mysterious objects. One of these objects are neutron stars. Neutron stars are among the objects having most extreme density and gravity. After black holes neutron stars are the one with most density and gravity. Neutron stars were first predicted by Swiss  astronomer Fritz Zwicky in 1933, but they seemed so fantastic that they were  ignored by scientists for decades. In 1933, with Walter Baade, he coined the word “supernova” and correctly predicted the existence of n eutron stars. We will discuss briefly about neutron stars and how they are formed. Illustration Of A Neutron Star What Is A Neutron Star?    In the aftermath of a supernova explosion, there is a tiny remnant called a neutron star. The density of neutron stars is unbelievably high and violent. Due to very high density, the gravity becomes extremely strong. The mass of neutron star could be equal to one, two or three suns but compressed to a diameter of only 25 kilometres. It is s